APPENDIX E. COMPUTING MAXIMUM NOISE LEVEL (L_{max}) FOR A SINGLE TRAIN PASSBY

This appendix provides procedures for the computation of L_{max} for a single train passby, for those readers desiring such procedures. Table E-1 contains the equations to compute L_{max} . The procedure is summarized as follows.

- Collect the following input information:
 - \blacksquare SEL_{ref}'s from Chapter 6, specific to both the locomotive type and car type of the train
 - \blacksquare N_{locos} , the number of locomotives in the train
 - \blacksquare N_{cars}, the number of cars in the train
 - L_{locos} , the total length of the train's locomotive(s), in feet (or N_{locos} × unit length)
 - \blacksquare L_{cars}, the total length of the train's set of rail car(s), in feet (or N_{cars}×unit length)
 - S, the train speed, in miles per hour
 - D, the closest distance between the receiver of interest and the train, in feet
- Compute $L_{\text{max,locos}}$ from the locomotive(s) using the first equation in Table E-1.
- Compute $L_{max,cars}$ from the rail car(s) using the second equation in Table E-1.
- Choose the larger of the two L_{max} 's as the L_{max} for the total train passby.

Table E-1 Conversion to $L_{\rm max}$ at the Receiver, for a Single Train Passby	
Source	Equation
Locomotives	$L_{\text{max,locos}} = \text{SEL}_{\text{locos}} + 10\log\left(\frac{S}{50}\right) - 10\log\left(\frac{L}{50}\right) + 10\log(2\alpha) - 3.3$
Rail Cars	$L_{\text{max,cars}} = \text{SEL}_{\text{cars}} + 10\log\left(\frac{S}{50}\right) - 10\log\left(\frac{L}{50}\right) + 10\log\left[2\alpha + \sin(2\alpha)\right] - 3.3$
Total Train	$L_{\text{max,total}} = \max \left[L_{\text{max,locos}} \text{ or } L_{\text{max,cars}} \right]$

D = closest distance between receiver and source, in feet

L = total length of measured group of locomotive(s) or rail car(s), in feet

S = vehicle speed, in miles per hour

 $\alpha = \arctan\left(\frac{L}{2D}\right)$, in radians

Example E-1. Computation of L_{max} for Train Passby

A commuter train will pass by a receiver of interest and its $L_{\text{\tiny max}}$ is desired. For this train, the following conditions apply:

 SEL_{ref} = 92 dB for locomotives and

= 82 dB for rail cars

 $N_{locos} = 1$

 $N_{cars} = 6$

S = 43 miles per hour

D = 125 feet.

The locomotive and rail cars each have a unit length of 70 feet. Therefore,

 L_{locos} = 70 feet

 L_{cars} = 420 feet

Using the equations in Table E-1,

 $\alpha_{\text{locos}} = 0.27$

 $\alpha_{\rm cars}$ = 1.03

and the resulting Lmax's are as follows:

 $L_{\text{max,locos}}$ = 84 dBA $L_{\text{max,cars}}$ = 74 dBA $L_{\text{max,total}}$ = 84 dBA.

End of Example E-1